Search results for " 35D05"
showing 2 items of 2 documents
Positive solutions for singular double phase problems
2021
Abstract We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a p-Laplacian and of a weighted q-Laplacian ( q p ) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter λ > 0 , the equation has at least two positive solutions.
Compact embeddings and indefinite semilinear elliptic problems
2002
Our purpose is to find positive solutions $u \in D^{1,2}(\rz^N)$ of the semilinear elliptic problem $-\laplace u = h(x) u^{p-1}$ for $2<p$. The function $h$ may have an indefinite sign. Key ingredients are a $h$-dependent concentration-compactness Lemma and a characterization of compact embeddings of $D^{1,2}(\rz^N)$ into weighted Lebesgue spaces.